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Abstract

This report describes work on the temporal segmentation of grasping task sequences based
on human hand motion. The segmentation process results in the identification of motion
breakpoints separating the different constituent phases of the grasping task. A grasping task
is composed of three basic phases: pregrasp phase, static grasp phase, and manipulation

phase. The pregrasp phase is the initial stage of the grasping task prior to the establishment
of a stable grasp (static grasp phase) involved in the task. The manipulation phase refers to
the purposeful hand-object interaction performed to achieve a goal in the task. In the pre-

grasp phase, the trajectory of the hand and the movement of the fingers follow an estab-
lished pattern. Specifically, it comprises two parallel and simultaneous components: the

hand transportation, and the hand preshape.

We show that by analyzing the fingertip polygon area (which is an indication of the hand
preshape) and the speed of hand movement (which is an indication of the hand transporta-
tion), we can divide a task into meaningful action segments such as approach object (which
corresponds to the pregrasp phase), grasp object, manipulate object, place object, and depart

(a special case of the pregrasp phase which signals the termination of the task). We intro-
duce a measure called the volume sweep rate, which is the product of the fingertip polygon
area and the hand speed. The profile of this measure is also used in the determination of the

task breakpoints.

The temporal task segmentation process is important as it serves as a preprocessing step to
the characterization of the task phases. Once the breakpoints have been identified, steps to

recognize the grasp and extract the object motion can then be carried out.
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1 Introduction

Robot programming is an essential component of task automation. The current methods
for robot programming include teaching (e.g., [3], [23]), textual programming (e.g., [8],
[9]), and automatic programming (e.g., [14], [22], [26], [39]). The first two methods are by
far the most pervasive in both the industrial and academic environments. In teaching
methods, the robot or manipulator learns its trajectory either through a teach pendant or

actual guidance through the sequence of operations ("teach-by-guiding" or less appropri-
ately "teach-by-showing"). This method of teaching is the easiest to use since the implicit
knowledge of the task is not necessary. On the other hand, because "teach-by-showing"
involves some degree of repetition as a result of errors, it can be tiring and possibly risky.

Furthermore, this method is not easily transferable to a different system. Textual program-
ming, while comparatively more flexible, requires expertise and often a long development
time.

The problems associated with "teach-by-showing" and textual programming can be allevi-
ated by automatic programming, where conceptually the only inputs required to generate
the control command sequences to the robot system are the description of the objects

involved in the task, and the high-level task specifications. However, realization of a prac-
tical system with automatic programming is difficult in part because of the complexity of

path and grasp planning and high-level task goal interpretation (i.e., breakdown of terse
high-level goal descriptions into direct actions to be performed to achieve that goal).

We have earlier stated some of the problems that exist for the more traditional approaches
to task programming. We could at least mitigate these problems by using a different
approach to task programming. The approach that we adopt in task programming is the
Assembly Plan from Observation (APO) paradigm proposed by Ikeuchi and Suehiro [15].
In this approach, task programming is performed by demonstrating the task to the system

rather than by the traditional method of hand-coding. It allows us to concentrate on under-
standing hand grasping motions. The key idea is to enable a system to observe a human
performing a task, understand it, and perform Lhe task with minimal human intervention.
This method of task programming would obviate the need for a programmer to explicitly

describe the required task, since the system is able to understand the task based on obser-
vation of the task performance by a human.

A similar approach to APO was taken by Kuniyoshi et al. [22] who developed a system
which emulates the performance of a human operator. However, their system is restricted
to pick-and-place operations. Takahashi and Ogata [37] use the virtual reality environment
as a robot teaching interface. The operator's movements in the virtual reality space via the
VPL dataglove are interpreted as robot task-level operations by using a finite automaton

model. Hamada et al. [10], on the other hand, specify commands such as "carry( cap, path,
body )" to interactively carry out operations. This is first simulated in a "task mental
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image" comprising a priori action knowledge and a graphical display. Subsequently, the

operations are carried out by the manipulator with the aid of a vision system that matches

the "mental image" models with the real objects.

1.1 Automatic robot instruction via Assembly Plan from Observation

We adopt the approach of Assembly Plan from Observation (APO) in our task programming

work. In this approach, the human provides the intelligence in choosing the hand (end-effec-

tor) trajectory, the grasping strategy, and the hand-object interaction by directly acting them

out. This helps to alleviate the problems of path planning, grasp synthesis, and task specifi-

cation. Our system, which incorporates the APO paradigm, is snown in Fig. 1.

C k Grasping Task
High-level Descriptor/Recognition

Description Module

Data '~D Generic E Manipulator
Acquisition Medium-level Grasp/Task or Robotic
System Description Translator System

E.g., visual ~hand-objcAt E.g., Salisbury E.g., graphicshand-object hn iuao ipa

tracking, stereo [ Low-level hand simulator display
vision, range Description simulation
images, Dataglove

A, B, C: Hierarchical description modules of grasping task
D: Output description of grasping task

E: Control commands
Fig. I System with perceptual task programming

The data acquisition system extracts data from the environment; it provides low-level infor-

mation on the hand location and configuration, objects on the scene, and with some analysis,

contact information between the hand and the object of interest. Note that vision need not

necessarily be the sole sensing modality through which low-level data is extracted. The

grasping task dscriptor/recognition module forms the basis of our work. It translates low-

level data into higher levels of abstraction to describe both the motion and actions taken in

the sequence of operations performed in the task. The vertical arrows in this module as

shown in Fig. 1 indicate the consolidation and interpretation of lower-level information to
yield successively higher-level information. The low-level description refers to the joint



3

angles and positions, the medium-level the grouping of functionally equivalent fingers, and
the high-level the type of grasp itself [18][191.

In our system, the output of the grasping task descriptor module is subsequently provided to
the interpreter (task translator) which in turn creates commands for the robotic system to
execute in order to perform the observed task. The representations given in submodules A,
B, and C are expected to be independent of the manipulator used in the backend of the sys-
tem, while the converse is true of the translator.

Our work in this area is expected to result in a greater understanding of grasping motions, to
the extent that recognition by a robotic system would be possible. The areas in which this
body of knowledge is potentially useful include planning, automation, and teleoperation.
Specifically, in our work, since the grasp is described using increasingly abstract and manip-
ulator-independent representations, the resultant system would be conceptually applicable to
any given manipulator (which is capable of prehensile grasping) to be used in the robotic
system. One potential problem is that the best grasp is dependent on both the shapes and rel-
ative sizes of the object and hand. (This is easy to see by comparing the grasps that are used
to secure a hold on a medium-sized object and a small object.) We are using the assumption
that the relative sizes of the hand and manipulator are comparable, so that an object that can
be held comfortably within the compass of the human hand can also be held in a similai
manner using the manipulator. If the manipulator is of a disproportionate size relative to the

hand, it would not be difficult to scale the size of the object appropriately. (However, the
dynamics and control issues would not be as simple.)

We believe that there exists a set of high-level descriptions of tasks relevant to both humans

and robots; we are very interested in identifying this common denominator. Among them
could wzll be the high level description of the grasp employed in the grasping task and the
description of motion of the hand relative to the object used in the task. This is a major moti-
vating factor for our work on identifying grasps from observation [18] and characterizing

the phases of a grasping task.

1.2 Temporal segmentation of a task

This report describes our work on the temporal segmentation of a given task sequence into

meaningful parts, namely reaching for the object, grasping the object, and manipulating the
object (respectively the pregrasp, grasp and manipulation phases, which are described in
greater detail in the next section). The temporal task segmentation is important as it serves

as a preprocessing step to identify the frames associated with the phases. This information
would then be used to focus on the relevant frames in order to characterize the phases in the

task. For example, when the grasp phase has been temporally located, the grasp can then be

identified using the location of the object and the hand configuration data [18]. In addition,
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by analyzing the motion of the object within the manipulation phase, the type of motion can
be extracted and determined.

1.3 Phases in a grasping task

As mentioned in the previous section, there are three identifiable phases in a grasping task:

1.3.1 Pregrasp phase'

This is the first phase of the grasping task which precedes the actual grasp. It is a combina-
tion of the trajectory of the hand ([2], [(16]) (hand transportation), and the temporal changes
in finger joint parameters in anticipation of the intended grasp ([21, (161) (hand preshape).
The trajectory of the hand is influenced by the distance of the object from the hand ([21,
[ 17]) while the finger joint parameter changes are dependent on the shape of the object ([21,
[ 17], [39]). The hand transportation and hand pre-shape components have been observed to
occur in parallel. Features of the hand pre-shape such as the approach area, approach vol-
ume, and approach axis, as described in [27], can be used to characterize this stage.

1.3.2 Grasp phase

The pregrasp phase ends and the static grasp phase begins at the moment the hand touches
and has a stable hold of the object. The type of grasp employed can be identified at this
phase, and can be represented using a grasp hierarchy proposed by Kang and Ikeuchi [ 18].

1.3.3 Manipulation phase

The manipulation phase is characterized by hand motions resulting in the purposeful move-
ment of the object relative to the environment. The grasp is chosen by the operator on the
basis of the mobility and dexterity required to manipulate the object.

A manipulative action can be as simple as just translating the object with respect to the envi-
ronment. It can be as complex as simultaneously transporting (by hand transportation) and
precision handling ([24], [25]) the object with the fingertips, changing it: pose with respect
to both the palm and the environment.

The idea of a homogeneous manipulation to describe the smooth object motion while per-
turbing a single static grasp is introduced in [33]. A complete task may comprise several
homogeneous manipulations. Perlin et al. [33] propose a structured and hierarchical

I. This has been variously referred to as reaching (121, [5), [391) and target approach (Q351, 1391). However.
these terms can be easily confused with the hand transportation component of this phase - Jeannerod 1161, for
example, uses the terms reaching and transportation interchangeably.
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approach to autonomous manipulation, specifically for the Utah/MIT hand. The scheme
involves the establishment of the static grasp taxonomy, from which a library of homoge-
neo,,s manipulations and subsequently low-level control primitives and sensor interactions
,%ay be developed. In our work, we assume homogeneous manipulation (i.e., the same grasp
is employed) within a manipulation phase.

Hirai and Sato [12] developed a system capable of recognizing a slave robot's pick-and-
place motions based on its joint sensors and force sensors attached to its two fingers. The
end-effector is a parallel-jaw gripper with a 6 DOF force sensor at the base of each finger.
The robot motion understanding is based on rules with pre- and post-conditions; a motion
state is recognized if the pre-conditions are satisfied. The primary motions that the system
can recognize are the approach, move-to-grip, and grip motions.

Pook and Ballard [34] use finger tendon tensions of a teleoperated Utah/MIT hand to recog-
nize specific teleoperated actions such as L.7asping a spatula, carrying the spatula, press the
spatula against the pan bottom, and sliding the spatula along the pan surface. The basic
method of recognition is pattern classification via vector quantization, k-nearest neighbor
classification and Hidden Markov Model.

Hashimoto and Buss [11] describe a system with a stationary sensor "glove" which mea-
sures the finger joint angles and exerts forces on the hand according to its simulated interac-
tion with the virtual object. They model the manipulative skill using a time-based sequence
of the grip transformation matrix proposed by Salisbury [311.

1.4 Organization of report

Section 2 reviews some of the characteristics of the pregrasp phase as described in the liter-
ature of human hand movement. The important features that are used in characterizing hand
motion are discussed at greater length. In Section 3, we describe the proposed task segmen-
tation algorithm using these features. Results of the task segmentation algorithm on several
tasks are also shown and discussed. We show in Section 4 how the results of the segmenta-
tion algorithm can be used to further identify the type of grasp employed in the task and
extract object motion during the manipulation phase. Finally, a summary of our work is
given in Section 5.
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2 Features for Segmentation of a Task Sequence

In this section, we review research on human hand movement, specifically on the character-
istics of reaching motions of the hand (i.e., during the pregrasp phase). Subsequently, we

describe the features that are used in our framework of task segmentation. Relevant work on
motion representation are also briefly discussed.

2.1 Studies in human hand movement

Numerous studies on human hand movement point to commonly established characteriza-
tions of the pregrasp phase. The pregrasp phase has been analyzed in terms of two simulta-
neous activities, namely the hand reaching activity (termed the hand transportation
component), and the finger activity in anticipation of the grasp (termed the hand preshape

component 1 ) (e.g., [17], [28], [29], [41]).

Typical profiles of the hand transportation speed and grip aperture'2 during the pregrasp
phase are shown in Fig. 2. The characteristic inverted bell-shaped curve of the hand trans-
portation speed has been observed by many researchers (e.g., [ 161, [321).

U Velocity profile
(Transportation)

Aperture
"Profile
(preshape)

0 ..

0

high-velocity
to low-velocity
transition point

0 Time
0% -75% 100%

Fig. 2 Typical pregrasp component profiles

Jeannerod ([16], [171) conducted experiments involving reaching and grasping movements

to see how object characteristics affect these movements. His experiments show that object
size and orientation affect hand preshape but not hand transportation. However, object dis-

I. This has also been referred to as the grasning or manipulation component. The alternative terms are not
used here to avoid confusion with the static grasp phase and the manipulation phase of the grasping task.

2. The grip aperture in this context is defined as the separation between the tips of the thumb and index finger.
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tance influences only the hand transpornation and not the hand preshape. Another interesting
inference from his series of experiments is the temporal coincidence between the starting of
the hand preshape aperture reduction and the commencement of the low-velocity phase of
the hand tranportation. (The point at which the low-velocity phase begins is at the time
where the lowest acceleration occurs.) These happen almost simultaneously after about 75%
of movement time had elapsed. Fig. 3 shows the temporal divisions of the hand preshape
and hand transportation components into different subphases whose boundaries coincides.

Hand preshape

Aperture reduction

Aperture increase phase phase

I I ITime-

0% -75% 100%

Hand transportationI
High velocity phase Low velocity

phase
I - ITime--

0% -75% 100%

Fig. 3 Pregrasp phase components

The hand preshape component is controlled by the distal muscles of the body and appears to
be activated by intrinsic or object-centered properties such as object shape and size [16]. In
contrast, the hand transportation component is controlled by proximal muscles and appears
to be activated by extrinsic or viewer-centered properties such as object location relative to
the person [ 16].

Marteniuk and Athenes [29] found that the maximum grip aperture has very strong linear
correlation with the object size and that movement time increased linearly with the decrease
in object (disk) size. The latter result is due to the increase in the duration of hand decelera-
tion while the duration of hand acceleration remained constant. The ratio of these two times
could perhaps be linked to the precision requirements of hand motion in the task, as Marte-
niuk et al. [30] suggest. Marteniuk and colleagues [30] noted that the objective of a task
(which dictates the precision requirements of the task) affect trajectory shape. For example,
in one of their experiments, the duration of hand deceleration was disproportionately longer
for the task of fitting a disk "nto a well when compared to that for a task of picking up a disk
and throwing it into a large box.

Wing, Turton and Fraser [411 report that the grasp iverture (separation between tips of the
thumb and index finger) was greater in cases where reaching movements were performed
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faster and where there was no visual feedback (i.e., subjects had their eyes closed while
reaching for the object).

The results of the research on human hand motion point to the importance of both the grip
aperture and speed of the hand in characterizing the pregrasp phase. These studies that high-
light the characteristic shapes of the grip aperture and speed profiles indicate that these mea-
sures may be used to temporally segment a task sequence into its constituent phases. Both of
these metrics (in one form or the other) form the bases of our work on temporal task seg-
mentation. Three quantifiable measures that are proposed are the hand volume, the fingertip
polygon, and the fingertip polygon normal.

2.2 The hand volume, fingertip polygon, and fingertip polygon normal

Lyons [27], in describing a conceptual high-level control mechanism for a dexterous hand,
defines the following tcrms:

"* approach volume - the volume between the fingers

"• approach area - surface formed by joining the fingertips of the preshaped hand by straight
lines

"* approach axis - outward normal to the approach area through its centroid

Lyons uses these terms in the context of the pregrasp phase. We extend these definitions to
the manipulation phase as well; the corresponding terms that we use are:

"* hand volume

"* fingertip polygon area

"* fingertip polygon normal

Fig. 4 depicts the ideas of hand volume, fingertip polygon, and fingertip polygon normal.
These features are potentially useful in characterizing a task. In fact, the fingertip polygon is
used as one of the primary features for temporal segmentation in our framework.
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Fingertip Fingertip Hand
polygon polygon volumenormal 

t

Fig. 4 Fingertip polygon normal, fingertip polygon, and hand volume for the hand (top) and a
manipulator (bottom)

2.2.1 Calculating the area and centroid of the fingertip polygon

Wing and Fraser [40] found from their experiments that the thumb contributed significantly
less in the reduction of grasp aperture that the other fingers. They suggest that the relative
stability of the thumb is due to its role in guiding the hand transportation of the pregrasp
phase. In light of this research, it would seem reasonable that the position of the centroid
within the fingertip polygon would be more heavily influenced by the position of the tip of
the thumb.
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P5

4
4P3

xPl

Fig. 5 Contact web e181, the fingertip polygon and the fingertip polygon normal and coordinate frame

Consider the contact web representation [ 18] of the hand at a given point in time during the
pregrasp phase (shown in Fig. 5). The fingertips are denoted as P, (tip of the thumb), P2, P3,

P4 and P5; Ca is the centroid of the fingertip polygon while fha is the fingertip polygon nor-

mal. The area of the fingertip polygon is
4

Aapp I _ Ak (1)

k 2

where Ak is the area of the triangle PIPkPk+I (calculated using Heron's formula):

Ak = psk (sk 0k) (sk - hk + 1) (sk - me (2)

where

k 1k+k+I + mdc (3)

Ik is the distance between P 1 and Pk, and Mk is the distance between Pk and Pk+ I

The centroid of the fingertip polygon is

1 5- P ; + Pi i = II (O p

Ca = I 4 2 - 5 (4)

i=2 gi= i

where o), = 4 and woi = I for i = 2, ..... 5. gi = I if finger i is involved in the static grasp

phase and 0 otherwise.
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The fingertip polygon normal is taken to be the normal of the best fit plane to the fingertips
(away from the hand). The frame origin of the fingertip polygon is at its centroid with the x-
axis defined to be the unit vector pointing towards the thumb fingertip and the z-axis defined
as the normal (Fig. 5).

A very important question arises: when do we know that the object has been grasped and at
which point does the object move with the hand? One possibility is to use explicit motion
boundaries.

2.3 Motion representation using explicit boundaries

Rubin and Richards [36] propose to characterize visual motion using explicit boundaries
that they define as starts, stops and force discontinuities (step and impulse). When one of
these boundaries occurs in a motion, human observers have the subjective impression that
some fleeting, significant event has occurred. Iba [13] augments these elementary bound-
aries with zero crossings in accelerations. While these motion boundaries show promise in
task segmentation, they are prone to noise and are less reliable when the sampling rate is
low, as was the case in our experimental setup.

3 Temporal Segmentation of a Task Sequence

In this section, we first define the notions of a subtask and an N-task, and describe how a
task can conveniently be pictorially represented as a state transition diagram. We then
describe the task segmentation algorithm. Subsequently, we show, with examples, how the
identified task breakpoints that separate the different phases can be used to identify the grasp
and extract the object motions in the manipulation phase. Determining the object motions in
the manipulation phase is useful in identifying the actions performed on the object during
the task.

3.1 State transition representation of tasks and subtasks

An assembly task may comprise a variety of operations such as moving towards an object.
picking up an object, moving the grasped object, inserting one object onto another, etc. It is
convenient to represent the task as a series of states and transitions. As mentioned earlier, a
task unit (called a subtask from this point on) is composed of three phases, namely the pre-
grasp, grasp, and manipulation phases. The grasp phase is treated as a transition from the
pregrasp phase to the manipulation phase. The state transition diagram for a subtask is
shown in Fig. 6(a). A task would minimally comprise these three phases and an ungrasp and
depart motions. The ungrasp motion is the opposite of the grasp motion while the depart
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phase is a specialized instance of the pregrasp phase. Hence a task has minimally one
embedded subtask; such a task is referred to as a 1-task (Fig. 6(b)). A task with N subtasks is
termed an N-task. The state transition diagram for a general task is depicted in Fig. 7.

P g M D

(a) (b)

States: Transitions:
P: pregrasp phase g: grasp
M: manipulation phase u: ungrasp
D: depart phase

Fig. 6 State transition diagram of a (a) subtask and (b) 1-task

1

u., 1 :5i : (N-I)
I

Fig. 7 State transition diagram of a general task (N-task)

The state transition diagram representation lays the groundwork for the temporal division of
a task sequence and facilitates the visualization of the extracted task components.

3.2 Temporal segmentation of task into subtasks

We can segment the entire task into meaningful subparts (such as the different states and
transitions described in the previous section) by analyzing both the fingertip polygon area
and the speed of the hand. The fingertip polygon area is an indication of the hand preshape
while the speed of the hand is an indication of the the hand transportation. While a viable
alternative appears to the grip aperture, i.e., the distance between the thumb and the index
finger, this feature is more prone to sensor error and uncertainty.

Intuitively, in the pregrasp phase, as a person moves his hand towards an object with the
goal of picking it up, he unconsciously increases the spacing between the fingers in anticipa-
tion of the grasp. This yields the characteristic inverted bell curve profile of the fingertip
polygon area during this time. The speed profile of the hand also assumes this trend, due to
the initial acceleration and the subsequent deceleration. Once the object has been picked and
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is being moved, we arrive at the manipulation phase of the task. Assuming homogeneous
manipulation, the fingertip polygon area remains approximately constant. Once again the
speed profile of the hand assumes the inverted bell curve of acceleration and deceleration.
By taking into consideration both the fingertip polygon and speed profiles in the pregrasp
and manipulation phases, we can more reliably divide the entire task into the following
actions: reach for object, grasp object, move or manipulate object, and place object. The
breakpoints can be extracted more reliably in this manner than from just the speed or finger-
tip polygon profile alone. This can be seen by considering the speed and fingertip polygon
profiles in Fig. 13 which possess many local minima. The significant values of the fingertip
area during the first manipulation phase (frames 11-17) also complicates the segmentation
process.

A useful profile to analyze is the profile of the product of the speed and fingertip polygon
area at each frame called the volume sweep rate profile. The physical interpretation of the
volume sweep rate is illustrated in Fig. 8. It measures the rate of change in both the fingertip
polygon area and speed in 3D space. While the hand reaches to grasp the object, both the
speed and fingertip polygon area profiles are bell-shaped, and although the peaks are not
coincident, its volume sweep rate has an accentuated peak, and hence a comparatively
higher peak value. This can be seen from the graph based on typical real data in Fig. 9.
Meanwhile, during object manipulation, the fingertip polygon area is always less than the
peak fingertip polygon area of the reach-object phase just prior to the grasp. This results in a
smaller peak value of its volume sweep rate. The volume sweep rate profile is used to get rid
of local extrema points (minima) in the speed profile that are not task breakpoints.

Fingertip polygon/atatt

Fingertip polygon
at (t+St)

Volume swept by fingertip polygon between t and (t+St) = Vs8t
Vs = volume sweep rate at t

Fig. 8 Physical interpretation of volume sweep rate
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- Volume sweep rate
- Fingertip polygon area
............ Speed

............. " --... o o,°'......................

....................... ..
-- N Time

Fig. 9 Typical profiles of fingertip polygon area, hand speed, and volume sweep rate during the
pregrasp phase

The algorithm to segment a task sequence into meaningful subsections starts with a list of

breakpoints comprising local minima in the speed profile. The initial breakpoints are

extracted from the speed profile rather than the volume sweep rate profile as while the latter
is useful in globally locating the true breakpoints, it contains more local minima. The global

segmentation procedure makes use of:

1. The condition that the pregrasp phases and the manipulation phases interleave;

2. The condition that the peak of the volume sweep rate in the manipulation phase is smaller
than those of the two adjacent pregrasp phases;

3. The condition that the mean of the volume sweep rate in the pregrasp phase is larger than
those of the two adjacent manipulation phases; and

4. The goodness offit of the volume sweep rate profiles in the pregrasp phases to parabolas.
In fitting the curve to the parabola, the search is pruned if either the estimated peak is out
of range of the interval of interest, or if the estimated parabola does not assume an
inverted U-shape (the latter is done by checking the estimated equation parameters).

Let

Ii = interval between breakpoints i and i+ 1;

Nt = number of hypothesized intervals;

NM = number of hypothesized manipulation phases = [N+ 1J 1;

MVSR,i = mean volume sweep rate in Ii;

MApAi = mean fingertip polygon area in Ii;
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FVSR,i = root of sum of squared error in parabola fitting the volume sweep rate profile in Ii;

FApA,i = root of sum of squared error in parabola fitting the fingertip polygon area profile in
li; and

MAPA, IFvSRIvsRIM,i--0
F VSF , I MVSR, I

1 F
D= (FvsR'2i-IFAPA,2i -. I +FVSR,2i+IFAPA,2i+l) ,1: i<Ng

MAPA, N,
FVSR N IF VSR, N, MVSRN ,i=Ng+

Di essentially yields the weighted sum of the RMS errors of parabolic fitting of the pregrasp
profiles adjacent to the hypothesized manipulation phase. The weight is taken to be the
mean polygon area in the pregrasp phase. The objective function associated with the list of
breakpoints is given by the mean

NM+ I

E = NM+ 2  
0i

The desired breakpoints are obtained by minimizing E. Using the volume sweep rate profile
rather than the speed profile reduces the tendency to incorrectly group adjacent phases, since
the more pronounced peaks in the pregrasp phase make them much more difficult to errone-
ously classified together with the adjacent manipulation phases.

Given a tentative list of breakpoints, the algorithm tries all the combinations subject to items
1 to 4 above. Many possibilities are pruned by the conditions in items 2, 3 and 4 above; the
combination which passes this test and yields the best overall parabola fit is then deemed to
be the desired task breakpoints.

3.3 Experiments

3.3.1 Implementation of hand tracking system

We track the configuration (joint angles) and pose (position and orientation) of the hand
using the CyberGlove [7] and Polhemus [1] devices respectively. The CyberGlove is an
instrumented, lightweight, flexible glove produced by Virtual Technologies. It has 18 sen-
sors (3 flexion sensors for the thumb and 2 for the other fingers, 4 abduction sensors, 1 pinky
rotation sensor, and the wrist pitch and yaw sensors). The distal interphalangeal joint angles
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are not measured but estimated instead based on the theoretically derived and empirically
t :ted relationship between the distal and proximal interphalangeal joint angles [6]. The Pol-
hemus 3Space Isotrak sensing device is attached to the dorsal side of the wrist, and provides
the position as well as the orientation of the hand relative to the Isotrak source. The Ogis
light-stripe rangefinder and a CCD camera provide the range and intensity images, respec-
tively.

The software which reads in and interprets the hand configuration and pose are mostly writ-
ten in C (some of which are adapted from the VirtualHand v 1.0 software supplied by Virtual
Technologies), while that which provides the object representation and its relationship with
the hand is written in Common Lisp. The geometric modeler used in our work is Vantage
[4]. In addition, the frames created to represent the grasp hierarchy [19] are done using
Knowledge Craft [21]. Knowledge Craft is a toolkit for knowledge engineers and AI system
builders, and it uses a frame-based knowledge representation language called CRL (Carn-
egie Representation Languange) with procedural attachment and inheritance.

3.3.2 Experimental results

The temporal task segmentation algorithm has been successfully applied to several task
sequences, and the results of two of the sequences can be seen in Fig. 12 and Fig. 13. The
breakdown and classification of the frames are shown in Fig. 10 and Table I (task sequence
1), and Fig. II and Table 2 (task sequence 2). Task sequence I (a 3-task) involves only pick
and place actions while task sequence 2 (a 4-task) involves pick and place, insert, and
screwing actions. For both sequences, the algorithm has correctly identified the frames
where an object is grasped and placed, regardless of whether the object is picked and placed,
inserted into another object, or screwed into another object.

u., si!ý_2
1

Fig. 10 State transition representation of task sequence I (3-task)

Table 1 Classification of frames in task sequence 1

Iii Pi gi Mi ui D

10,....81 (9) 110,..., 13) (14)
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Table 1 Classification of frames in task sequence 1

i Pi gi Mi ui D

2 (15,..., 18) {19} {20,...,251 (26)

3 (27, ..., 30) (31) (32, ..., 371 {381

{39, ..., 441

u., 1 _ i _3

Fig. 11 State transition representation of task sequence 2 (4-task)

Table 2 Classification of frames in task sequence 2

i Pi gi Mi ui D

1 10'.....91 {10} {111,-,. 171 118)

2 119,..., 23) (241 {25,..., 35} 1361

3 137, ... , 43) (441 145,..., 51}) 521

4 (53, ..., 581 (59) (60, ... ,90) (91)

5 (92, ... , 101)
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Graph of Fingertip Polygon Area/Speed/Volume Sweep Rate vs. Time (Set 1)
50.0 1

- Fingertip polygon area
Speed

- Volume sweep rate/ll00'2

S 40.0

#2

<20.0

10.0

I~ 10.0030 0 Frm

Fig. 12 Identified breakpoints in task sequence 1 (a 3-task).
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Graph of Fingertip Polygon Area/Speed/Volume Sweep Rate vs. Time (Set 2)

80.0 *

- Fingertip polygon area
13....E Speed

- Volume sweep rate/10.0

Transporting
m 60.0 Inserting and screwing

action actions
C4,

E

40.0

t-

t~20.0

0.0 20 80 Frame

Fig. 13 Identified breakpoints in task sequence 2 (a 4-task).
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3.4 Implementational problems

After the task breakpoints have been identified, we can then proceed to identify the grasp
and extract the object motions during the manipulation phase. However, these two processes
are complicated by, among others, errors in the Polhemus readings which cause the raw data
of the hand position and configuration to be unreliable. The sources of the errors are:

1. Distortion of magnetic field by nearby ferromagnetic material. This effect is significant
because the Polhemus device uses ac magnetic field technology to determine the relative
pose of the sensor to the source.

2. Inaccuracies in localization of the Polhemus device in the range image during
rangefinder-to-Polhemus frame tran ;,irm calibration. The inaccuracies are in part
attributed to the model built in the geometric modeler not exactly corresponding to the
actual shape and specified stepsize and resolution of the fitting algorithm.

3. Inaccuracies in the modeling of the hand.

4. Misalignment of the Polhemus sensor relative to the hand. This happens as tile sensor is
not rigidly fixed to the glove.

5. Misalignment of the Polhemus source relative to the table, since it is not very rigidly
affixed to it.

Since a task can be broken down into its constituent subtasks, we can then analyze each sub-
task individually. The subtask analysis involves grasp identification and object motion
extraction; we illustrate this analysis with experiments involving 1-tasks.

4 1-task Analysis

Analyzing subtasks is equivalent to analyzing 1-tasks, since each l-task contains a subtask.
there is no loss in generality in illustrating the analysis using 1-tasks. Each subtask can be
characterized in terms of the grasp used and object motion during the manipulation phase.
The grasp can be identified from contact information between the hand and object at the
grasp frame identified by the task segmentation algorithm. This is done by mapping the low-
level contact information such as the contact position and normal into increasingly abstract
entities such as functionally equivalent groups of fingers and the degree of interaction
between these groups [181. The method to determine the object motion is described in sub-
section 4.2.

A series of experiments featuring I-tasks were conducted as follows:

1. Take the range image of the scene before the subtask. This is used to determine the loca-
tion of the object of interest.
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2. Perform the 1-task (which comprises only a set of pregrasp, grasp, and manipulation
phases) while its intensity image sequence and the CyberGlove and Polhemus readings
are being recorded.

3. Take the range image of the scene after the 1-task has been performed.

This approach was used because with it is not possible to sample range images rapidly with
the current setup. The light-stripe rangefinder takes about 10 seconds to cast 8 stripe patterns
and calculate the range values for a 256x240 image. The intensity images (each or resolu-
tion 128x120) taken during the performance of the 1-task are sampled at a rate of about 1.5
Hz.

4.1 Task segmentation, grasp identification and manipulative motion
extraction for 1-tasks

A major problem in identifying the grasp is the imperfect positional information obtained
from a real data acquisition system such as ours. In addition, the exact moment of grasping
cannot be pinpointed due to the discrete sampling of the hand location and configuration. As
a result, we have to resort to extra preprocessing to accommodate such data imperfections,
specifically adjusting the orientation of the hand at the grasp frame.

The processes of segmenting the task and determining the grasp and manipulative (i.e.,
object) motions are done using a three-pass approach. The first pass establishes the motion
breakpoints while the second pass involves adjusting the pose of the hand and subsequently
determining the grasp employed in the I-task. Finally, the effect of the reorientation of the
hand is propagated throughout the 1-task sequence and the object motion is then extracted
using the approach delineated in the following subsection. The details of the three-pass
approach are as follow:

Pass 1:

1. Estimate pose of object from the before-task range image.

The initial gross position (but not the orientation) of the object of interest is determined
by subtracting the 3D elevation map of the scene after the task from that before the task.
The 3DTMI program is then um-,J to localize the object. Two refinements were made: (a)
use three orthogonal initial post. -i d pick the final estimated pose with the least RMS fit
error; and (b) use coarse-to-tin -,

2. Calculate the motion profiles (speed, fingertip polygon area, and volume sweep rate).

3. Determine the motion breakpoints from the motion profiles as described earlier

I. Short for 3D template matching. See Appendix for a brief description of this 3D object localization pro-
gram.
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Pass 2:

1. From known motion breakpoints (determined in Pass 1), calculate the object motion

associated with the manipulation phase (which is bordered by the grasp and ungrasp

transitions).

2. At the grasp frame, determine the grasp employed.

Due to the errors in the Polhemus and CyberGlove readings, the oriented hand may inter-

sect the object. The hand is reoriented (subject to the fixed position of the Polhemus sen-

sor) until: no interpenetration between the hand and object occurs; and the weighted sum

of distances between the hand contact points and the object is minimized.

The determination of the "optimal" hand pose is done with direct search with rotational

increments of 1.150 and limited to a maximum of 600 rotation about discretely sampled

axes (80 directions sampled on a once-tesselated icosahedron). (An increment of 1. 150
would produce at most an error of about 2 mm at a point 10 cm away from the rotation

center.)

The object is stored as a collection of oriented surface points (position and normal infor-

mation associated with each point) whose spacing is typically between 4.0-7.5 mm. This

spacing of the object depends on the object size - it is increased for a larger object size.

The nearest distance of each hand contact point to the object is then estimated using this

oriented point representation.

Once the "optimal" pose of the hand and the object-contact information have been

extracted, the grasp is then recognized using the classification scheme described in [181.

Pass 3:

1. Propagate adjustment in both distal and proximal motions throughout the task due to

hand reorientation in Pass 2.

2. The gross after-the-task pose of the object is determined by successively applying the dis-
tal transformations in the frames composing the manipulation phase to the original
object position (i.e., prior to the task). This after-the-task pose is refined using the 3DTM
program.
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4.2 Determining object motion during the manipulation phase

poly

S(k+ 1)
Oplemus

Pose at frame (k+1)
proximal

A7 A i ATk a Oklhemus

total - distal proximal Pose at frame k

Fig. 14 Total and proximal motions from frame k to k+1 during the manipulation phase

It may be useful to determine the proximal motion (which corresponds to the motion of the

arm and wrist) and distal motion (which corresponds to motions of the fingers, otherwise
referred to as "precision handling" [24]). The total motion, which is the overall effect of

both the proximal and distal motions, directly yields the object motion. Meanwhile, the
proximal and distal motions yield information on which component of the hand/arm motion

is contributing to the object motion.

We can determine the object motion transformations (i.e., the total motion) in the manipula-
tion phase once we have identified the task motion breakpoints. Supposc the kth frame has

been identified as the grasp frame and the lth frame the ungrasp frame in the task sequence
of N frames. The desired object change in pose at frames between k and 1 (i.e., during the
manipulation phase) can be be determined (Fig. 15) from (5):

AT = 74k+j (5)

k~~j-hand hand

where Tand is the total transform associated with the motion of both the fingers and hand at

the kth frame.

Fig. 15 Determining the differential motion between two frames In the manipulation phase
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frame Grasp Ungrasp
• frame frame

0 1 k k+1 1-I 1 1+1 N-I

Total k ha and hand had +hand
hand hand °h°and hand hand °n 74hn 7 hand

motion LD
"motionTkk+ 1 '6T*,+ A I -1_6 ATk,I

Object localize
pose the final
transform object pose

Akl ATk, l'Tk,I

Fig. 16 Determining the pose of the object throughout the task sequence of N frames

Based on (5), we can then calculate the object pose transformations at each frame within the
manipulation phase as shown in Fig. 16. The pose of the object at the end of the manipula-
tion phase is most likely not very accurate, due to measurement inaccuracies. This pose is

refined using a least-squares distance error minimization technique [42].

4.3 Results of applying the 3-pass algorithm

We have applied the 3-pass algorithm on two real 1-tasks to determine the motion break-

points, identify the grasp employed, and recover the object motion. The first 1-task involves
picking up a cylinder from one location and placing it on a different location. The results of
the first pass are shown in Fig. 17 and Fig. 18. The pose of the object prior to the perfor-

mance of the 1-task has been estimated from the range image. As shown in Fig. 18, the

motion breakpoints (grasp and ungrasp points) as well as the pregrasp, manipulation, and
depart phases are all located.
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Fig. 17 Initial pose of the cylinder (1-task #1)

It is interesting to note the profiles of the average joint flexion angles for each finger and all
the fingers (Fig. 19(a)) for this 1 -task. As expected, there was very little change in the aver-
age flexion angles during the manipulation phase, during which the cylinder was grasped
with a power cylindrical grasp. It is also interesting to note that profile of the reciprocal of
the average joint angles for all the fingers (Fig. 19(b)) is very similar to that of the fingertip
polygon area. This suggests that this may be another metric that can be used in the task seg-
mentation scheme.
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Fig. 18 Motion profiles and the identified motion breakpoints (1-task #1)
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Fig. 19 Average flexion angle profiles (1-task #1): (a) each and all fingers; (b) comparing the scaled

inverse average angle to the fingertip polygon area.
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(a)

(b)

Fig. 20 Reorienting the grasp in Pass 2: (a) initial pose of the hand relative to the object; (b) final pose of
hand relative to cylinder

Once the hand was reoriented (Fig. 20), the grasp was then correctly identified as a type 2
'coal-hammer' cylindrical graspi using the grasp classification scheme described in [181.
By propagating the extracted object motion during the manipulation phase, the object pose
was then estimated (Fig. 2 1(a)). The pose is subsequently refined (Fig. 2 1(b)).

I. A 'coal-hammer' cylindrical grasp is one in which the thumb is highly abducted (i.e., significantly deviated
from the plane of the palm). This 'coal-hammer' cylindrical grasp is of type 2 because the thumb touches the
object. See 181 for more details.
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(a) (b)

Fig. 21 Pose of the cylinder after the task subsequent to Pass 3: (a) pose obtained by successively
applying total motion transformations in the manipulation phase; (b) refined pose using the
3DTM program [. 71

The second 1-tas& :onsidered is picking up a stick and inserting it through a hole in a castle-

shaped object. The two objects involved in this 1-task and the superimposed model of the

stick are shown in Fig. 22. Fig. 23 depicts the extracted motion breakpoints and phases of

this task.

Fig. 22 Initial pose of the stick (1-task #2)

As in 1-task #1, the shape of the reciprocal of the average angle profile closely resembles

that of the fingertip polygon area (Fig. 24(b)). However, because the stick was held in a pre-

cision grasp and the object motion was a combination of translational and rotational

motions, there were changes in the average finger joint angles during the manipulation

phase (as evidenced in Fig. 24(a)).



30

60.0

i'. - Fingertip polygon area
Speed

A- Volume sweep rate/10.0

m" 40.0

I-I

6 20.0

00
0 0 ...;..

0. Frame0(10 20 340 50

P =0, 13}
g= {14)

P DM ={15,..., 281
g U u ={29}

D= 30,..., 41)

Fig. 23 Motion profiles and the identified motion breakpoints (1-task #2)
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Fig. 24 Average flexion angle profiles (1-task #2): (a) each and all fingers; (b) comparing the scaled
inverse average angle to the fingertip polygon area.
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(a)

(b)

Fig. 25 Reorienting the grasp in Pass 2: (a) initial pose of the hand relative to the object; (b) final pose of
hand relative to stick

Fig. 25 shows the pose of the hand relative to the stick at the grasp frame before and after

reorientation. The grasp was identified as a precision grasp. However, because the middle
segments of the four fingers are within the tolerance range of the object (which is set at 1.0
cm), the grasp is classified as a composite nonvolar grasp [181, specifically a prismatic pinch
grasp. The grasp that was actually employed in the task is a five-fingered prismatic precision
grasp; it can be seen from this result that the while the general grasp classification is correct,
the specific category is sensitive to orientation and position errors.
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(a) (b)

Fig. 26 Pose of the stick after the task subsequent to Pass 3: (a) pose obtained by successively applying
total motion transformations in the manipulation phase. b) refined pose using the 31)T.d
program [42].

Fig. 26(a) shows the estimated object pose at the end of the task from extracted total motion.

Fig. 26(b) shows the refined final object pose.



34

5 Summary

A task comprises three identifiable phases, namely, the pregrasp, grasp, and manipulation
phases. By using the motion profiles of the task, we show that the task can be automatically

temporally segmented into these phases. The motion profiles are those of the fingertip poly-
gon area (area of polygon whose vertices are the fingertips) and the speed of the hand

motion. We introduce the notion of the volume sweep rate, which is the product of the fin-

gertip polygon area and the hand speed. The volume sweep rate profile is also used in the

task division algorithm. The successful application of this algorithm on real task examples

demonstrates its viability. The temporal task segmentation process is important as it serves
as a preprocessing step to the characterization of the task phases. Once the breakpoints have

been identified, steps to recognize the grasp and extract the object motion can then be car-
ried out. Two illustrative examples on how these are done were shown.

In addition, it may be useful to characterize the manipulation phase in terms of total motion

(due to both finger .amd hand motions), distal motion (due to just finger motion) and proximal

motion (due to just hand motion). While the total motion directly yields the object motion,

the proximal and distal motions yield information on which component of the hand/arm
motion is contributing to the object motion. This report indicates how these motion transfor-

mations can be determined.
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Appendix: Determining the transformation between
polhemus and rangefinder frames

A.1 Polhemus device mounted at the back of the wrist

In order to merge the hand data from the CyberGlove and Polhemus devices, and range data
from the rangefinder, we firs: recovered the transformation between the CyberGlove/Polhe-

mus and rangefinder reference frames. This is done by laying the CyberGlove/Polhemus
devices on the table and taking their range image as well as the Polhemus readings. The
required transformation between the two frames are determined from the recovered pose of

the Polhemus device in the range image and the Polhemus readings.

CyberGlove

Polhemus device-.-

Fig. 27 The CyberGIove and Polhemus devices and their 3D centroids

The pose of the Polhemus device is extracted from the range image using the following two

steps:

1. Determine a rough estimate of the pose of the Polhemus device:

The 3D centroid of the measurements of the CyberGlove (Pg) is first calculated as shown
in Fig. 27. Assuming that the Polhemus device is the brightest region in the image, the

intensity image is thresholded and the 3D centroid of the device (Pp) is found. Pp yields a
coarse estimate of the device position; by calculating the vector difference between the
two centroids (Pp-Pg) and normalizing it, we arrive at a coarse estimate of the device ori-

entation (Fig. 28).
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2. Localization of the Polhemus device using the 3DTM algorithm [42]:

The 3DTM (3D template matching) algorithm refines the pose estimate through minimi-
zation in a manner similar to deformable templates, active contours, and snakes [20][381.
In this case, the template is derived from the geometric model of the Polhemus device
which is created using the geometric modeler Vantage [4]. The formulation of reducing
the Euclidean distance between the image 3D points and surface model points is based on
the Lorentzian probability distribution; this distribution has the effect of lowering the
sensitivity of localization error to object occlusion and extraneous range data. The final
localized pose of the Polhemus model is shown superimposed on the image in Fig. 29.

Fig. 28 Location of the coarsely estimated pose of the Polhemus device

Fig. 29 Final estimated pose of the Poihemus device

Let the transformation corresponding to the i•covered Polhemus pose in the rangefinder
frame. be denoted by RangeTaI and the transformation corresponding to the Polhemus read-
ings be denoted by POlTcal. Then the transformation that expresses the coordinates in the
Polhemus frame ii. erms of those in the rangefinder frame is given by

Range T = RangeT POT-I1
Pol cal cal

SPolhemus device mounted at the back of the hand

Vh,•n the Polhemus device is moved to the back of the aand to reduce the amount of error
propagation in the location of the fingers, estimating the initial pose of the Polhemus device
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is less straight-forward. The previous method of using the 3D centroids of the CyberGlove
and Polhemus devices would not be reliable in this case (Fig. 27) due to their proximity to
each other.

/CyberGlove

Polhemus device

Fig. 30 The CyberGlove and Polhemus devices and their 3D centroids

The approach that we took comprises the following steps:

1. Determine the approximate position of the Polhemus device

This is found by determining the 3D centroid of the brightest region in the image (which
is assumed to correspond to the Polhemus device).

2. Determine from principal component analysis the 3D major axis of the region occupied
by both the CyberGlove and Polhemus devices

This yields the estimated orientation of the Polhemus device. Note that this orientation
could be anti-parallel to the correct initial orientation.

3. Use the 3DTM algorithm to refine the pose of the Polhemus device in the range image

However, because of the ambiguity of the initial orientation, we use a two-pass approach:
In the first pass, we input the original pose estimation into the program which outputs the
refined pose and the average error. Subsequently we modify the refined pose by modify-
ing the orientation by a rotation difference of 1800 and use this as input to the second
pass. We use the refined pose which corresponds to the lower average error.
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Fig. 31 Initial pose of the Polhemus device

Fig. 32 Pose immediately after the first pass (switch in orientation)

Fig. 33 Final pose of Polhemus device

Once the pose of the Polhemus device had been determined, the transformation between the
range-finder and Polhemus frames are calculated as in the previous section.

A.3 Linear interpolation of polhemus-to-rangefinder transform

The Polhemus device was originally mounted at the dorsal aspect of the wrist portion of the
CyberGlove. This has created serious inaccuracies in the hand and finger locations as the
error accumulates from the wrist outwards. These errors include inaccurate hand dimensions
and configurations, and errors in joint angle measurement. The Polhemus device uses an ac
low-frequency, magnetic field technology to determine the position and orientation of a sen-
sor in relation to a source; nearby ferromagnetic material causes field distortion which
would then yield erroneous pose readings. Unfortunately, the equipment that we use has
metallic chassis and support frames.
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To reduce the inaccuracies due to the compounding effect of angular and configuration
errors, we remounted the Polhemus device at the dorsal aspect of the hand. In addition, to
compensate for the distorted magnetic field in the workspace (which causes the inaccuracies
in the Polhemus readings), we calibrate the Polhemus device at several reasonably well-
spaced places (eight) and interpolate between these calibration poses according to spatial
proximity. The calibration poses are, however, restricted to those within both the camera and
rangefinder views.

Fig. 34 Superimposed hand on image in a task sequence with one calibration point

Fig. 35 Superimposed hand on image in a task sequence with eight calibration points

Fig. 34 and Fig. 35 show the effect of using several calibration poses as compared to just
one.
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